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Trapped waves generated by oscillatory sources or dipoles placed above a plane infinite
beach are examined within the framework of a (classical) non-hydrostatic but linear
theory. This is achieved by solving a boundary-value problem where the boundary
conditions are specified on the free surface and on the bottom. Integral expressions
are derived for the complex potential for the cases where the sources or dipoles
are strategically positioned to mimic the presence of solid bodies, a phenomenon
manifested by the observation of a streamline enclosing the source or dipole. The
precise positioning is governed by the further requirement of no radiating waves and,
for the case where the beach is a vertical cliff, some recent results are confirmed
here, whilst new results obtained show that infinitely many submerged wave trapping
bodies exist and do so over a far greater range of values of dipole positions than
was previously thought to be the case. The situation for surface sources and for
submerged dipoles is therefore essentially different. For the former, infinitely many
closed streamlines exist for each of the denumerably infinite set of source positions.
For the latter, it is found instead that only one closed streamline exists, but this is for
each of a non-denumerably infinite set of dipole positions. The expressions obtained
for the beach are used for the two cases of a surface source and a submerged dipole to
compute streamlines and stagnation points for model beaches of chosen steep slope.
In particular, a (randomly chosen) submerged closed streamline is calculated for the
beach of angle 45◦ thereby establishing a new case of non-uniqueness for the water
wave problem on a beach.

1. Introduction
Wave trapping by obstacles has recently attracted the attention of many authors

and an overview of recent results is given in McIver (1996) and McIver (2000) (see
also Evans & Kuznetsov 1997). Hitherto, the work mostly appears to have treated
problems for infinite or uniform depth and little recent attention appears to have
been given to the case of a sloping bed. This (linear) problem was, however, originally
discussed by Morris (1974a) for the case where an oscillating logarithmic source is
placed at a zero of the regular potential φ1 (see Stoker 1957, p. 77–84) above a
plane infinite beach. Following that work, Morris (1974b) proposed that, in such a
case, where the wave field at infinity will be asymptotically small, closed streamlines
can be found to enclose various positions of the source. The implication is then
that there can exist, in principle, a trapped wave between the shore and an obstacle
whose surface coincides with any of these stream lines. Thus this provides examples
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of non-uniqueness for the equivalent water wave problem although Morris did not
compute any such closed streamlines.

Some difficulties were encountered (by this author) with the asymptotics given in
Morris’ papers, making numerical computations extremely unstable, and the intention
is here to examine a different solution technique with the particular objective of giving
more robust asymptotics. It is shown that the Mellin transform approach provides
this technique.

The formulation is begun with the simple case of a 45◦ beach where the source is
placed on the surface. This is then generalized to beach angles of the form π/2k, k � 1
and (for ease of computation) evaluated for some special cases where k is integer.
These computations include the calculation of streamlines surrounding the source
positions, chosen to eliminate radiating waves.

The solution is then further generalized to the case where the source is submerged
thus enabling immersed oscillating dipole solutions also to be constructed. The
conditions for zero radiation are maintained for all cases and numerical computation
undertaken for a range of parameters. In so doing, the numerical results of McIver
(2000) are recovered for her case (k = 1) which is here equivalent to the beach
becoming a vertical cliff. In that work, she demonstrated the existence of a submerged
trapping obstacle.

One of the main aims of the present work is the generalization of McIver’s work
to beaches of arbitrary slope. This is carried out by demonstrating numerically, on a
beach of unit gradient, the existence of the essential ingredient, namely the occurrence
of two submerged stagnation points having a common stream function value. Indeed,
it turns out that, both for the cliff and the beach of gradient unity, this situation
can be constructed for dipole positions lying on a (submerged) trajectory whose
dimensionless horizontal coordinate seems to be restricted only to sets of intervals
of lengths π/2. There seems no reason to suppose that there is a restriction on the
number of these intervals, but here only the existence of the first two are demonstrated
in the two cases considered. Having established the above, it is then a matter only
of routine computation to calculate the unique submerged closed streamline which
surrounds the chosen dipole position. This is done in a number of cases.

The layout of the paper is as follows. In the next section the procedure for the
simplest possible case, namely a source on the surface with a beach of gradient
unity, is outlined. The fundamental technique of using the inverse Mellin transform
is developed whereby the surface Robin condition results in a first-order difference
equation for the Mellin kernel. The method of solving this is outlined in § 3 and it
is verified, in § 4, that non-radiating solutions are provided by the condition that the
source is placed at a zero of potential for the classical scattering problem without a
source. This fact can easily be verified by an application of Green’s theorem, but the
verification through the solution itself provides an excellent check on the ansatz and
the way the solution is developed. Some observations on numerical inversion of the
Mellin transform and the asymptotics of the integrands are described in § 5 and this is
followed in § § 6, 7 and 8 respectively by the generalization to arbitrary beach angles,
descriptions for submerged sources and finally submerged dipoles. This last section
includes a computation for the case of a vertical cliff, which establishes the absolute
agreement with previous results by McIver (2000). The application of the theory to
a beach is explored in § 9 with a number of examples for a beach of unity gradient.
The observation is made there that other beach angles may be similarly dealt with,
although obviously the computations will be somewhat more demanding in terms
of time.
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Figure 1. Non-dimensionalized coordinates and image system. Case: surface source at
distance ρ from shoreline; α = π/4.

2. Ansatz
Polar coordinates r, θ are useful for this type of problem with the polar line r = 0

representing the shoreline, θ = 0 the still-water level and θ = −α the rigid bottom,
so that the wedge so formed represents the primary domain D of the flow (figure 1).
Periodic wave motion at angular frequency ω will be generated by sources and
dipoles and this enables the entire problem to be non-dimensionalized with respect
to the length g/ω2 and the time ω−1. Throughout this work it is assumed that the
non-dimensional velocity potential Φ and stream function Ψ are given by

(Φ, Ψ ) = Re((φ(R, θ), ψ(R, θ))eiωt ),

where R = (ω2/g)r . The governing equations (see also Morris 1974a) are first written
(and subsequently generalized) for the case of a 45◦ beach, here with the single source
positioned on the surface θ = 0 at a distance R = ρ from the shoreline R = 0 but
later in the work with either source or dipole at submerged positions. The equations
are

∇2φ = 0, (R, θ) ∈ D, (2.1)

∂φ

∂θ
= 0, θ = −α, (2.2)
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1

R

∂φ

∂θ
= φ, θ = 0, (2.3)

φ bounded as R → 0, (2.4)

(2.5)

and, for the correct singularity at the source,

φ → log |z − ρ|, z → ρ, (2.6)

where z = Reiθ . Instead of using the image system defined by Morris (1974a), a
quadrupole-type arrangement is taken with sources +1 at points z = ±1, ±i together
with a source −4 at the origin; here z = Reiθ . Whilst this seems to introduce a
logarithmic singularity at the origin (which will need to be removed) it will yield a
much simpler Mellin transform analysis than would Morris’ arrangement.

A solution to the problem is then expressed in the form

φ(R, θ) =
1

2πi

∫ c+i∞

c−i∞
R−sA(s) cos s(θ + α) ds + log

∣∣∣∣z4 − ρ4

z4

∣∣∣∣ , (2.7)

where c is a suitable real constant. The condition on the bed is satisfied automatically
and the free-surface condition L1[φ]|θ=0 = 0, where L1 ≡ R − ∂θ , can be expressed in
the form

1

2πi

∫ c+i∞

c−i∞
R−sA(s) {cos sα + (s/R) sin sα} ds + log

∣∣∣∣R4 − ρ4

R4

∣∣∣∣ = 0

subject to differentiability under the integral sign. It is assumed that 0 < c < 1 and
consequently required that A(s) has precisely a double pole at the origin in order
to balance the logarithmic singularity at R = 0. Subject to suitable behaviour at
infinity the second of the two integrals can therefore, by Cauchy’s theorem, be written

(1/2πi)
∫ c−1+i∞

c−1−i∞ R−τ−1τA(τ ) sin(τα) dτ provided A(s) is otherwise analytic in the strip
c − 1 � Res � c. Following the substitution τ = s − 1, the two integrals can now
be combined as one single inverse Mellin transform. Rectification of the inverse then
results in the difference equation

A(s) cos sα + (s − 1)A(s − 1) sin(s − 1)α = −ρs

4

∫ ∞

0

τ s/4−1 log

∣∣∣∣τ − 1

τ

∣∣∣∣ dτ, (2.8)

and the assumptions made are verified a posteriori in connection with boundedness
requirements of the physical solution φ.

Using results (7.7.10) and (7.7.17) given by Titchmarsh (1948) the integral on the
right-hand-side is found to be (4π/s) cot (πs/4).

3. Solution
The difference equation may be solved by a standard method following a simple

transformation. Thus, with �(s) denoting the usual gamma function, put

A(s) = �(s)�(s) sin(s − 1)α

so that the equation transforms to

�(s) − �(s − 1) = cot

(
πs

4

)
πρs

�(s + 1) sin(s − 1)α sin(s − 2)α
.
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Note that �(s) is now required to have a simple pole at s = 0. Accordingly write

�(s) =
λ

1 − e2πis
+ C(s)

where λ is suitably chosen to regularize the potential at R = 0 and C(s) satisfies the
same difference equation as �. A particular solution can then be constructed from
the contour integral

C(s) =

∫
L

C(τ )e2πiτ

e2πiτ − e2πis
dτ

provided L is suitably chosen and contains only the one simple pole at τ = s. Assuming
that, in the outer solution integral, Re(s) = 1

2
(see e.g. Ehrenmark 1987) such a choice

for L is given by the boundary of a rectangle whose sides are Re(τ ) = − 1
4
, 3

4
and

Im(τ ) = ±Y where Y will be taken arbitrarily large. The resulting solution may then
be written

C(s) =

∫ 3/4+i∞

3/4−i∞
cot

(
πτ

4

)
πρτe2πiτ

�(τ + 1) sin(τ − 1)α sin(τ − 2)α

{
1

e2πiτ − e2πis

}
dτ.

Note, in particular that C(s) is regular at s = 0 and that, by shifting the integration
contour between Reτ = δ and Reτ = 1 − δ, 0 < δ < 1, it can be argued that C(s) is
indeed analytic in −1 + δ < Re(s) < 1 − δ so that, by Montel’s theorem (Titchmarsh
1939, p. 170), any asymptotic limit deduced for C(s), |Im(s)| → ∞ will be valid in the
entire strip. The asymptotics of C(s) which justifies the vanishing of the contributions
to the contour integral over the paths Im(τ ) = ±Y is discussed in the next section. It
is required in particular that |C(s)| remains bounded as Ims → +∞.

4. Non-radiating solution
The near- and far-field asymptotics of inverse Mellin transforms of the type in

equation (2.7) has been discussed by the author in several papers, e.g. Ehrenmark
(1987) where it is demonstrated that a radiating wave field will result in an inversion
integral with the property of convergence at infinity as a Cauchy principal value. In
the absence of a radiating field therefore, it is expected that the integral will be at
least conditionally convergent and that, consequently, |A(s) cos sα| will be O(|y|−1+ν |),
ν � 0 as y → ±∞ on s = 1

2
+ iy.

Clearly, as Ims → −∞ there is no difficulty with A(s) exponentially small. When
Ims → +∞, the result, after passing the integral for C(s) over the simple pole at
τ = 0, is

�(s) ∼ λ + 8πi
√

2 + f (ρ) + O(|s|−1)

where

f (ρ) =

∫ −1/2+i∞

−1/2−i∞
cot

(
πτ

4

)
πρτ

�(τ + 1) sin(τ − 1)α sin(τ − 2)α
dτ,

and the error term is verified in the next section. This last expression can be
transformed into the (classical scattering potential) solution integral for the regular
wave in the absence of a source (Ehrenmark 1987) by making the substitution τ = −t ,
noting that α = π/4 and that �(t) sin πt = π/�(1 − t). This expression is

f (ρ) =

∫ 1/2+i∞

1/2−i∞
ρ−t�(t) cos tα sin(t − 1)α dt.



266 U. T. Ehrenmark

So for a non-radiating field, ρ needs to be chosen so that

f (ρ) = −(λ + 8πi
√

2).

(One can also reason this from arguments involving the Riemann–Lebesgue lemma.)
The value of λ is governed by the requirement of boundedness at the shoreline. The
near-field asymptotics of the solution of (2.7) is determined by the residues of the
integral in the left-hand half-plane and in particular, therefore, the double pole at
the origin which yields the logarithmic term. Putting s = ε, for small ε, the integrand
expands like

(�(1) + ε�′(1))(1 − ε log R)(−sin α + εα cos α)λ

−2πiε2(1 + O(ε))
,

giving the contribution to the logarithmic (log R) part arising from the residue
−λ sin α log R/(2πi). If the logarithmic term from the quadropole arrangement is
added, it is found that the choice λ+8πi

√
2 = 0 leads to removal of logarithmic terms

at the shoreline. Moreover, this also leads to f (ρ) = 0 so that the chosen positions
of the surface source must coincide with zeros of the regular scattering potential, in
precise agreement with the results of Morris (1974a, b). This result of course can also
be obtained by applying Green’s identity in the usual way to the two potentials φ and
φ0, where φ0 is the classical scattering potential and φ that of the present problem.
It therefore provides an excellent check on the validity of the development of the
solution for C(s) and the ansatz used.

5. Numerical procedure
The stream function for this non-radiating field is given by

ψ(R, θ) = − 1

2πi

∫ c+i∞

c−i∞
R−sA(s) sin s(θ + α) ds + arg

{
z4 − ρ4

z4

}
. (5.1)

The first numerical expedient is to note that (entirely as expected) the integrand is
purely real on the real axis (this may be observed, for example, by considering the
residue calculation of the integral for C(s) completing a contour in the left-hand
half-plane). The expression for C(s) + λ/(1 − e2πis) can be rewritten as

�(s) = 8

∫ 1/4+i∞

1/4−i∞

ρ−τ�(τ ) cos τα sin(τ − 1)α

1 − e2πi(s+τ )
dτ − 8�(−s)ρs cos sα sin(s + 1)α.

This can be evaluated by residues in the left-hand half-plane, providing a solution
which could have been obtained rather more trivially (see e.g. Titchmarsh 1948,
p. 302). The set arising from the poles τ = −s − N, N = 0, 1, . . . gives the final
expression

�(s) = 8

∞∑
N=1

ρs+N�(−s − N ) cos(s + N )α sin(s + N + 1)α, Res > − 1
2

(5.2)

because the set given by the poles of �(τ ) contributes a fixed multiple 8/(1 − e2πis) of
the vanishing integral f (ρ). Thus �(s) is real on the real axis and the simplification
suggested is substantiated. Note also from equation (5.2) that the sum provides a
Poincaré asymptotic expansion of �( 1

2
+ it), t → +∞, the first term of which is

O(t−2). Accordingly, equation (5.1) may be written
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ψ(R, θ) =
−1

π
√

R
Re

∫ ∞

0

R−it�
(

1
2

+ it
)
�

(
1
2

+ it
)
sin

(
− 1

2
+ it

)
α

× sin
(

1
2

+ it
)
(θ + α) dt + arg

{
z4 − ρ4

z4

}
. (5.3)

From the point of view of numerical integration it is useful to combine where
possible terms that (as t → ∞) grow large with those that decay. One convenient way
of doing this here is to exploit the identity

�
(

1
2

+ iτ
)
�

(
1
2

− iτ
)

≡ π sech πτ

and factor �(1 − s) from the summation expression for �(s). Use also of the identity
�(−s + 1) = s(s + 1)�(−s − 1) shows that on the free surface each of the integrals
for N = 1, 2, . . . is absolutely convergent with integrands of order t−1−N whilst in
the fluid interior there is superposed exponential decay also. Numerical integration is
therefore comparatively straightforward.

6. General beach angles
In the case of general values of α = π/2k < π/2 the Schwarz–Christoffel trans-

formation on the image system potential provides an equivalent description (cf.
equation (2.7)) in the form

φ(R, θ) =
1

2πi

∫ c+i∞

c−i∞
R−sB̃(s)�(s) cos s(θ + α) ds + log

∣∣∣∣zπ/α − ρπ/α

zπ/α

∣∣∣∣ . (6.1)

The difference equation for B̃ is established essentially as before and is

B̃(s) cos sα + B̃(s − 1) sin(s − 1)α = −πρs cot sα

�(s + 1)
. (6.2)

In order to reduce the left-hand side to the simple difference operator there is a need
to be reminded of the fundamental Mellin transform solution to the classical wave
problem (Ehrenmark 1987). The bounded solution with unit amplitude at infinity is
given by

φ0(R, θ) =
1

2πi

∫ 1/2+i∞

1/2−i∞
R−sB(s)�(s) sin πs

cos s(θ + α)√
2π cos sα

ds (6.3)

where B(s) is defined by

B(s) = �(s) exp

[∫ ∞

0

dt

t

{
2et/2 sinh

(
s − 1

2

)
t

(ekt + 1)(et − 1)
−

(
s − 1

2

)
e−t

}]
, −k < Res < k + 1.

(6.4)

Note also that B(s + 1) = B(s) tan sα. A closed form is obtained when k is integer:

B(s) = 2k−1√
2π cosec πs

k−1∏
j=0

cos(s + j )α, 0 < Res < 1 (6.5)

and it may be noted that (on θ = 0) a multiple of f (ρ) is recovered in the case k = 2.
An important consequence of equation (6.4) is that

B(s)B(1 − s) = π cosec πs.



268 U. T. Ehrenmark

The substitution

B̃(s) cos sα = B(s) sin πs d(s)

therefore reduces the difference equation (6.2) to

d(s) − d(s − 1) = − πρs cot sα

�(s + 1)B(s) sin πs
. (6.6)

This can now be solved by Titchmarsh’s procedure which is tantamount to forming
the formal sum and then confirming convergence. This will be assured in Res > 0 for
the case where k is integer (see the Appendix for a fuller explanation). The simple
pole of B̃ required at s = 0 (see § 2) again requires that sd(s) must be regular at
the origin. It can be concluded that a full solution to the difference equation may
therefore be given by

d(s) =
λ̃

1 − e2πis
+

∞∑
N=1

πρ(s+N) cot(s + N )α

�(s + N + 1)B(s + N ) sin π(s + N )
, 0 < Re(s) < 1, (6.7)

where λ̃, ρ are chosen as before to ensure regularity at the shoreline and non-
radiating field at infinity. This form, although useful computationally, is not an
optimum for discussing singularities. The equivalent integral solution is given by d(s) =
λ/(1 − e2πis) + d̃(s) where the particular integral is

d̃(s) = −
∫ 3/4+i∞

3/4−i∞

π cot ταρτe2πiτ

�(τ + 1)B(τ ) sin τπ

{
1

e2πiτ − e2πis

}
dτ.

Proceeding as before (passing over poles at τ = 0 and τ = s) the expression can be
rewritten as

d̃(s) =

∫ 1/4+i∞

1/4−i∞

ρ−τB(τ )

�(1 − τ )

{
1

1 − e2πi(s+τ )

}
dτ − 2πi

αεB(ε)(1 − e2πis)
− π cot sα ρs

�(1 + s)B(s) sin πs

where the limit ε → 0 is understood. Denote

πfk(ρ) =

∫ 1/2+i∞

1/2−i∞
ρ−τB(τ )�(τ ) sin πτ dτ,

then, as Ims → +∞, it follows that

d(s) ∼ λ − 2πi

B(1)
+ fk(ρ)

so λ has to be chosen to make this vanish in order to have a non-radiative wave
field. The asymptotics required to ensure that the last term in the expression for d̃ is
O(|s|−1) is provided by the result |B( 1

2
+ iτ )|2 = π/(cosh πτ ) and the asymptotics of

�(1 + s) on s = 1
2

+ iτ .
Meanwhile, considering again the residue from the double pole at s = 0 in the

solution integral (equation (6.1)) one finds a term (λB(1)/(2iα)−π/α) log R. The value
of B(1) is found to be

√
α, so the choice of ρ governed by

λ =
2iπ√

α

leads again to the source positions of the zeros of the regular potential solution,
i.e. fk(ρ) = 0. The outcome of this is equivalent to choosing λ̃ = 0 so that a
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Figure 2. Streamlines around surface source. Case: α = π/4, with oscillating source on the
surface at x = 3.9.

computationally robust strategy (on s = 1
2

+ iy) can be founded on the solution

B̃(s) = −B(s) sin πs

cos sα

∞∑
N=1

ρs+N�(−s − N )

B(1 + s + N )
,

for the case where k is integer. In more general cases, the zeros and singularities of
B(s) are somewhat complicated and a summation strategy is not prudent. In such
cases the integral expression for d(s) should be used. Reverting to integer k, the full
stream function is therefore expressible as

ψ =
−1

2i

∫ c+i∞

c−i∞

(
R

ρ

)−s
sin s(θ + α)

cos sα

∞∑
N=1

(−ρ)N
N∏

j=0

cot(s + j )α

(s + j )
ds + arg

{
zπ/α − ρπ/α

zπ/α

}
.

(6.8)

6.1. Computations for a source on the surface

Calculations are presented by means of streamline diagrams for various source
positions. In each of these cases the source has been placed at a zero of the classical
potential solution, consistent with the requirement for zero radiation. In each case
it may also be noted that there are closed streamlines surrounding the source, thus
confirming the existence of wave-trapping solid objects with the surface piercing
property. Note further the existence near the bed of stagnation points. The cases
α = π/4 and α = π/8 have been chosen for simplicity. Figures 2 and 3 show, in each
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Figure 3. Streamlines around Mode 2 surface source. Case: α = π/8, with oscillating source
on the surface at x = 2.6.

case, the streamlines for the non-radiating case (i.e. the source is placed at a zero of
φ0) for the second mode (mode is used here in the sense that mode i means the ith
zero of φ0 counting from the shoreline).

To show a higher mode, calculations have also been done for mode 3 in the case
of the α = π/8 beach. The streamlines for this case are displayed in figure 4. Finally,
it seemed of interest to display the effective standing wave elevation profile when a
chosen stream-line surrounding the surface source is replaced by a solid object. This
is done in figures 5 and 6 for the respective modes 2 and 3 on the respective beach
angles π/4, π/8.

7. A submerged source
In order similarly to consider the submerged source position (ρ, −γ ), γ > 0, in

polar coordinates, it is prudent to introduce first the image system shown in figure 7
for the case of beach angle α = π/4. The following expression may then be used as
an ansatz for the potential:

φ(R, θ) =
1

2πi

∫ c+i∞

c−i∞
R−sB̃(s)�(s) cos s(θ + α) ds + log

∣∣∣∣ (z4 − ρ4e4iγ )(z4 − ρ4e−4iγ )

z8

∣∣∣∣ .
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Figure 4. Streamlines around Mode 3 surface source. Case: α = π/8, with oscillating source
on the surface at x = 5.52.

This is easily generalized to any slope angle,

φ(R, θ) =
1

2πi

∫ c+i∞

c−i∞
R−sB̃(s)�(s) cos s(θ + α) ds

+ log

∣∣∣∣∣
(
zπ/α − ρπ/αeiγ π/α

)(
zπ/α − ρπ/αe−iγ π/α

)
z2π/α

∣∣∣∣∣ . (7.1)

The Mellin transform of the logarithmic term on θ = 0 is required in order that the
earlier analysis can be repeated. By denoting the first term on the right-hand side
of equation (7.1) by φ(0) and using an overbar to indicate the Mellin transform with
respect to R, one can write

φ(s, 0) = φ(0)(s, 0) + 2

∫ ∞

0

Rs−1 log

∣∣∣∣∣1 −
(

ρ

R

)π/α

eiγ π/α

∣∣∣∣∣ dR.

To evaluate this Mellin transform, we again use results (7.7.10) and (7.7.17) given
by Titchmarsh (1948) after splitting and transforming the integrand in the obvious
way onto respectively arg R = γ and arg R = −γ , following which integration can be
restored onto the real axis (by contour deformation) in both cases. The result finally
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is that the difference equation (6.2) is modified to

B̃(s) cos sα + B̃(s − 1) sin(s − 1)α = −2πρs cos s(γ − α)

sin αs �(s + 1)
, (7.2)

whilst that for d(s) is similarly modified to

d(s) − d(s − 1) = − 2πρs cos s(γ − α)

sin αs �(s + 1)B(s) sin πs
. (7.3)

Its solution is then, as before, expressible in either of the alternative forms (for suitable
λ, λ̃)

d(s) =
λ̃

1 − e2πis
+

∞∑
N=1

2πρ(s+N) cos(s + N )(γ − α)

sin(s + N )α �(s + N + 1)B(s + N ) sin π(s + N )
,

0 < Re(s) < 1 (7.4)

if k is integer or

d(s) =
λ

1 − e2πis
−

∫ 3/4+i∞

3/4−i∞

2π cos τ (γ − α)ρτ

sin τα �(τ + 1)B(τ ) sin τπ

{
1

1 − e2πi(s−τ )

}
dτ,

for arbitrary k. The same procedure as before is carried out, passing over the poles
at τ = 0 and τ = s and noting the asymptotics of d(s) as Ims → +∞ remains
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unchanged. The procedure for choosing the values of ρ, γ so that φ0(ρ, −γ ) = 0
(equation (6.3)) therefore again guarantees both the regularity of the solution (7.1)
at R = 0 and the absence of radiating waves. (The residue from the double pole at
s = 0 remains unchanged for the submerged source.) The expression for B̃(s) is then
modified to

B̃(s) = −2B(s) sin πs

cos sα

∞∑
N=1

ρs+N�(−s − N ) cos(s + N )(γ − α)

B(s + N ) sin(s + N )α
,

so that, for integer k, the expression for the stream function can be written

ψ = i

∫ c+i∞

c−i∞

(
R

ρ

)−s
sin s(θ + α)

s sin sα

∞∑
N=1

(−ρ)N
cos(s + N )(γ − α)

cos(s + N )α

N∏
j=1

cot(s + j )α

(s + j )
ds

+ arg

{(
zπ/α − ρπ/αeiγ π/α

)(
zπ/α − ρπ/αe−iγ π/α

)
z2π/α

}
.

8. A submerged dipole
Green’s theorem shows that, in a quest for a totally submerged closed streamline,

it would be necessary to consider submerged sources in pairs of equal but opposite
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Figure 7. Typical image source distribution in the submerged case,
α = π/4, d = ρ sin (α − γ ).

strengths(±1). Some experiments have been carried out to this effect with such a
pair, placing each on a different branch of the valid non-radiative trajectories (given
by φ0(ρ, −γ ) = 0). To date, these experiments have not yielded a positive result.
However, in McIver (2000) it is shown that it is possible to insert an oscillating
submerged dipole in front of a vertical barrier in such a way that a closed streamline
surrounds the dipole and therefore, by implication, with no waves radiated, yet
another non-uniqueness example is established. The case treated by McIver is that of
infinite depth. The question therefore naturally arises of whether this can also be done
for the case where the barrier is instead a plane beach. To this end, the generalization
of equation (7.5) is required for the case where the submerged source is replaced by
a dipole.

Clearly, with a submerged dipole, the image distribution has to take account of
the angle of its axis. McIver chose equal-strength vertically and horizontally aligned
dipoles, but with the inclined bed it is by no means clear that such an arrangement
would be sufficient. Take therefore the dipole axis at angle β to the horizontal. The
full image arrangement for the case α = π/4 is shown in figure 8. One can take
(Rutherford 1959, p. 51) the complex potential of a dipole of unit strength at z = z0

as w0 = eiβ/(z − z0), in which case the potential of the full image system shown in
the diagram (satisfying Neumann conditions on both θ = 0 and θ = −π/4) is

w0(z) =
4z3

0e
iβ

z4 − z4
0

+
4z0

3e−iβ

z4 − z0
4
.

Taking the opportunity to generalize also to beach slope α, the real-valued velocity
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potential may be written in the form

φ(R, θ) =
1

2πi

∫ c+i∞

c−i∞
R−sD(s)�(s) cos s(θ + α) ds + Re {w0(z)} . (8.1)

where z0 = ρe−iγ and where now

w0(z) =
π

α

{
z

π/α−1
0 eiβ

zπ/α − z
π/α

0

+
z0

π/α−1e−iβ

zπ/α − z0
π/α

}
.

The correct surface condition is to be satisfied by appropriate choice of D(s) although
now, of course, there is no need to assign a double pole of the integrand at s = 0. By
writing

D(s) =
B(s)d(s) sin πs

cos sα
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different scales for S1, S2. Case: α = π/2; vertical wall at x = 0. McIver’s is case shown with
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and after noting the Mellin transform of Re{(zπ/α−1
0 eiβ)/(zπ/α − z

π/α

0 )} the equation
satisfied by d(s) is found to be

d(s) − d(s − 1) =
2πρs−1 cos(β + γ − s(γ − α))

�(s)B(s) sin sπ sin (sα)
.

Since it is now required for d(s) to be regular at the origin, the solution, following
previous procedures, can be expressed in the form

d(s) = 2π

∫ 3/4+i∞

3/4−i∞

cos(β + γ − τ (γ − α))ρτ−1

sin τα sin πτ�(τ )B(τ )

[
1

1 − e2πi(s−τ )

]
dτ. (8.2)

The requirement is that |d(s)| = O(|s|−1) as Ims → ±∞ in order that there are no
radiating waves. The behaviour of d is clearly exponentially small as Ims → −∞ so it
remains only to ensure that the integral expression in equation (8.2) has the required
behaviour as Ims → +∞. Noting the convolution f (s)f (1 − s) = π cosec πs satisfied
by both B(s) and �(s) it follows that

fk(ρ) =

∫ 1/4+i∞

1/4−i∞
ρ−1−τB(τ )�(1 + τ ) sin πτ cos(β + γ + τ (γ − α)) sec τα dτ = 0. (8.3)

This could also be verified by placing equal but opposite sources close to each other
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Figure 10. Streamline around submerged dipole. Case: α = π/2; vertical cliff; dipole position
Q (1.0013, −0.0496), upper stagnation Point A (1.018, −0.00136), lower stagnation Point B
(0.8395, −0.0950).

anywhere on any one of the curves of zero potential for the classical standing wave
problem. A dipole whose axis is tangential to the chosen curve is thereby mimicked.
Morris (1974a) sketched some of these curves for various beach angles which in polars
would be given parametrically by setting φ0(ρ, −γ ) = 0 in equation (6.3). The dipole
axis would then be orthogonal to ∇φ0. Thus, forming ds · ∇φ0 = 0, where ds is along
the dipole axis and therefore parallel (in polars) to the vector (cos(β + γ ), sin(β + γ )),
one recovers equation (8.3) from this condition.

In order to relate the above result to the recent work of McIver (2000), a special
case is now considered.

8.1. Special case of a vertical cliff

It is interesting to compare the works of Morris (1974a) where, for the vertical cliff
case, it was noted that, to achieve trapped waves, the single surface source could be
placed at zeros of cos x, while McIver (2000) placed submerged dipoles on the vertical
line x = π/4 albeit very close to the surface. With her choice κa = π/4, McIver is
essentially combining two equal-strength horizontal and vertical dipoles in front of a
vertical cliff, in such a way that this would reduce to a single dipole with axis given by
β = π/4 in the present model. It follows (for k = 1) that B(s) = (

√
2π cos sα)/(sin πs)

and hence from equation (8.3) that the requirement of non-radiating waves on the
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chosen line can be written

∫ 1/2+i∞

1/2−i∞
ρ−s�(s) cos(β+π/2+s(γ −α)) ds = e−ρ cos(γ −α) cos(ρ sin(γ −α)+π/2+β) = 0,

following the transformation s = τ + 1. For the vertical cliff (α = π/2), this gives
simply ρ cos γ − β = 0, so on the line chosen by McIver, the dipole axis required is
consistent with β = π/4. Moreover, other lines x = const. can be chosen, provided
the dipole axis is rotated accordingly. Of course, McIver chose x = ρ cos γ = π/4
because there she was able to observe a closed streamline surrounding the source.
The present investigation will reveal numerically that, provided the dipole is rotated
axially, such closed streamlines do actually exist for a whole range of values of dipole
locations. Evidence of this is demonstrated below. Meanwhile, it is confirmed (as a
benchmark test) that the numerical results of McIver are indeed reproduced by the
present model.

8.1.1. Stagnation points

The location of stagnation points is paramount in a quest for a closed submerg-
ed streamline. McIver (2000) showed that the coordinates of the two points that
exist, in her example, are respectively S1 : (0.809116, −0.00174415) and S2 : (0.637412,
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Figure 12. Submerged dipole: dipole and associated stagnation-point trajectories. Case: α =
π/2; vertical wall at x = 0, second (seaward) mode. Symbols show two random dipole positions
with corresponding stagnation points.

−0.0499727) and that the common stream function value at these points is ψ =
6.97737. In order to seek a numerical procedure to determine these, the full complex
potential function w(z) (retaining the form for general angles α) is written

w(z) =
1

2πi

∫ c+i∞

c−i∞
R−sD(s)�(s)e−is(θ+α) ds + w0(z). (8.4)

Differentiation shows that

zw′
0(z) =

1

2πi

∫ c+i∞

c−i∞
R−sD(s)�(s + 1)e−is(θ+α) ds (8.5)

at a stagnation point.
By accepting the convenience of integer k the closed-form solution for B(s) may be

used (to simplify computation) and with the conjugate of equation (8.1) the stream
function may be written

ψ(R, θ) =
−1

2πi

∫ c+i∞

c−i∞
R−sD(s)�(s) sin s(θ + α) ds +

π

α
Im{w0(z)}. (8.6)

An expression for d which can be used on the line of integration Re(s) = 1
2

may
be written either from residue calculation or using Titchmarsh’s method to solve the
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difference equation. This gives

d(s) = 2πρs−1

∞∑
N=1

ρN cos(β + γ − (s + N )(γ − α))

�(s + N )B(s + N ) sin(s + N )π sin(s + N )α
, 0 < Re(s) < 1.

(8.7)

By keeping to complex potential form, a complex Newton–Raphson iterator is
used to determine stagnation points and thereby track, for different dipole positions,
the stream function values at these points; in particular mapping the value of
δψ = ψ1 − ψ2 where ψi is the value at the ith stagnation point. McIver found the
closed streamline whenever δψ = 0. The sensitivity of the numerical computations is
extreme, partly due to the proximity of the free surface (which cannot be traversed
in the Newton–Raphson iterations); however, with McIver’s values as starting values
an almost complete trajectory of dipole positions on 0 < x < π/2 has been found.
This is displayed in figure 9 along with the trajectories of associated stagnation points
S1, S2 (note the different scales used for these two points). Alternating symbols are
inserted at four random positions (square indicates McIver’s parameters) to show the
association between a local dipole position and the points S1, S2.

To investigate the nature of the closed streamline surrounding the dipole, the
horizontal coordinate 1.0013 is chosen (quite randomly) for the dipole (Q) yielding a
computed vertical coordinate (−0.0496, which gives no radiated waves), the associated
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stagnation points A and B, the common stream function value at these points
(ψ = 7.4465); plotted in figures 10 and 11 is the closed streamline. Figure 11 is a
blow-up showing the near-surface view so that the submerged nature of the streamline
is more clearly visible.

The occurrence, in the case of surface sources as discussed earlier, of non-radiating
source positions at a denumerably infinite set of points prompts a further investigation
for the case of submerged dipole. It was seen that, for this vertical wall case, the
dipole trajectory appears to enter the free surface from below (and therefore essentially
disappear) near both x = 0 and x = π/2. McIver (2000) used the notion of virtual
streamlines above the free surface and one can similarly imagine the dipole trajectory
becoming virtual at x = π/2 and, if oscillatory, set to return below the free surface
(for a mode 2 contribution, say) possibly at x = π. This has been confirmed to a
certain extent numerically and there seems no reason why this behaviour should
not continue further seaward also. The numerical evidence is presented in figure 12
(details similar to the previous figures).

9. Computations for a beach
Both the cases of a source on the free surface and a submerged dipole have

been computed in the case of a beach of gradient unity. The difficulty in computing
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similarly for shallower beaches of slope rπ/2n, r, n ∈ Z, (r, n) = 1 would only be the
extra algebra required to solve equation (8.3) for the positions of the dipole, whilst
for more general angles, the summation used within the inversion integral (e.g. (7.5))
would need to be replaced by a further infinite integral. Such routines have been
successfully carried out by the author in related work, e.g. Ehrenmark (1987).

9.1. Dipole within the fluid domain

Calculations similar to those described in the previous section (for the vertical wall)
have been applied to the case of a beach of gradient unity. Having established in the
wall case that there was a range of values of the x-coordinate for which the pivotal
two stagnation points could be identified, it was more straightforward to locate these
in the beach case. However, for the beach of unity gradient, it is found that the
primary domain of existence seems to have shifted from x ∈ [0, π/2] to x ∈ [3π/4,

5π/4] (see figure 13).
Having computed full data for the stagnation points and dipole positions possible,

it is then an easy matter to identify a closed submerged streamline surrounding any
one of these chosen dipoles. Shown in figures 14 and 15 is the case where the dipole
is placed on the vertical line x = π. The (unique) vertical position which guarantees
zero radiation is found to be y = −0.058. The required orientation of the dipole turns
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out to be given by β = −2.35339 radians. Determining the orientation is not entirely
trivial. One can note the exact solution for fk(ρ) from equation (8.3) by using the
appropriate form of B(s) using equation (6.5) in the case of integer k(= n). For the
case of the beach of unit gradient (k = 2), it is found that

tan(β + α) =
ex cos x + ey cos y

ey sin y − ex sin x
, (9.1)

where the dipole position is z = x − iy. Figure 14 displays both streamlines and
equipotentials together with the outline of the submerged closed streamline (shown
with a bold line). The submerged nature of this contour is more clearly shown in the
‘blow-up’ in figure 15. Also computed is the equivalent standing-wave modulation
profile (for a relative amplitude 0.01). This shows clearly the occurrence of a node
between the shoreline and the equivalent obstacle and also the decay of the wave
amplitude seaward of the obstacle. One would anticipate further nodes entering if
the dipole position is moved seaward to the next range of existence of the stagnation
point pair, and so on.

10. Conclusion
It is demonstrated that the pioneering work on wave trapping due to surface-

piercing or submerged obstacles by McIver (1996, 2000) can be extended from uniform
or infinite depth to the case where the bed is a plane incline. It is found here that the
situations created by surface sources and submerged dipoles are essentially different.
For the former, infinitely many closed streamlines exist for each of a denumerably
infinite set of source positions which happen to be the zeros of potential in the
classical perfect reflection problem. Each of the streamlines enclose the source so that
any one can be chosen to mimic the presence of a solid body. For the submerged
dipole it is found instead that only one closed streamline exists, but that this can
be constructed for each of a non-denumerably infinite set of dipole positions. Whilst
the theory is applicable to beaches of any slope, for expedience in the present work
the computations have been limited to beach angles of the form π/2k for integer k.
It is likely that the case of an overhanging cliff for which k < 1 would also be of
interest and further development of numerical quadrature routines should reveal this.
Equally, additional experimentation with pairs of submerged unit sources of opposite
sign could be interesting. If suitably placed on distinct ‘non-radiative’ trajectories (as
discussed earlier) there seems to be no immediate physical reason why such a pair
(now not forming a dipole) should not also, in some cases, be surrounded by a closed
streamline. The present author has hitherto been unable to support this conjecture
with evidence and further experimentation is desirable.

Work is being undertaken to explore the possibility of extending this theory to
the case of oblique waves. Potentials for this three-dimensional problem have been
constructed by Morris (1976) using a method of Green’s functions and it remains to
be seen if these can be used to develop a similar theory for oblique wave trapping by
surface-piercing or submerged cylinders. Meanwhile, readers wishing to experiment
further with the two-dimensional cases may be interested in a ‘rough and ready’
Fortran77 program available for at least 12 months after the publication date of the
present article at www.lgu.ac.uk/cismres/xtra/jfm03.txt. One question that might be
explored is this: Given that, in each modal range, there exists a unique maximally
submerged closed stream-line (and therefore, by implication, a uniquely shaped
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maximally submerged obstacle) how do the sizes and locations of these obstacles
vary as the mode number increases (i.e. as the implied obstacle is taken further and
further seawards)?

Thanks are due to Maureen McIver and Richard Porter for a number of extremely
helpful discussions and also verification of numerical results on the vertical wall case
(M.M.), to D. V. Evans for suggesting and discussing the problem and also to the
anonymous referees for their many useful comments.

Appendix
Some of the results in the text require a careful analysis of the zeros and poles

of the function B(s) defined by equation (6.5) in the text. In Ehrenmark (1987) it is
shown that

B(s) = �(s) exp Fk(s), −k < Re(s) < k + 1

where Fk(s) is analytic in this strip. Thus B(s) has a simple pole at s = 0 but is
otherwise regular and non-zero in 0 < Re(s) < k + 1. From the recurrence relation
B(s +1) = B(s) tan sα it therefore follows that B has a pole at s = k +1. If the recur-
rence is applied continually, it can be seen that poles appear at all points s = k+j, j =
1, 2 . . . unless k is an integer, in which case zeros appear at s = 2k + j, j = 1, 2 . . . ,

to cancel the poles. There are further sets of poles of this type at s = 3k + j, j =
1, 2 . . . , s = 5k + j, j = 1, 2 . . . and so on (which again are terminated by zeros at
s = 4k + j, j = 1, 2 . . . , s = 6k + j, j = 1, 2 . . . , when k is integer).

It may be noted, when k is integer, that 1/(B(s) sin sα) is analytic in the entire right-
hand half-plane. This observation facilitates the construction of d(s) as an infinite
summation, rather than an infinite integral. In an earlier work, Ehrenmark (1988),
it is shown that, even in the case of irrational k, a meaningful summation can be
constructed provided this is interpreted in the sense of over-convergence (see also
Titchmarsh 1939, p. 220). On the other hand, it is also perfectly possible to compute
d(s) interactively by numerical quadrature. For the submerged poles and dipoles, the
defining integral converges at an exponential rate as |s| → ∞ on Res = 1

2
with the

exponent proportional to the polar angle of the submergence.
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